Determinan matriks B yang memenuhi persamaan [tex] \left(\begin{array}{ccc}-4& &2\\ & & \\5& &-2\end{array}\right) B = \left(\begin{array}{ccc}9& &-1\\ & & \\
Matematika
Fvajar
Pertanyaan
Determinan matriks B yang memenuhi persamaan [tex] \left(\begin{array}{ccc}-4& &2\\ & & \\5& &-2\end{array}\right) B = \left(\begin{array}{ccc}9& &-1\\ & & \\-10& & 2\end{array}\right) [/tex]
1 Jawaban
-
1. Jawaban Takamori37
[tex]\left[\begin{array}{cc}-4&2\\5&-2\end{array}\right]B=\left[\begin{array}{cc}9&-1\\-10&2\end{array}\right] \\ B=\left[\begin{array}{cc}-4&2\\5&-2\end{array}\right]^{-1}\left[\begin{array}{cc}9&-1\\-10&2\end{array}\right] \\ B=\frac{1}{8-10}\left[\begin{array}{cc}-2&-2\\-5&-4\end{array}\right]\left[\begin{array}{cc}9&-1\\-10&2\end{array}\right] \\ B=-\frac{1}{2}\left[\begin{array}{cc}-18+20&2-4\\-45+40&5-8\end{array}\right] \\ B=-\frac{1}{2}\left[\begin{array}{cc}-2&-2\\-5&-3\end{array}\right][/tex]
[tex]B=\left[\begin{array}{cc}1&1\\^5/_2&^3/_2\end{array}\right] \\ \det(B)=\frac{3}{2}-\frac{5}{2} \\ \det(B)=-\frac{2}{2}=-1[/tex]